
BNL-66596 

1999 Particle Accelerator Conference, New York, NY, March 29-April 2, 1999 

USING SERVERS TO ENHANCE CONTROL SYSTEM CAPABILITY* 

M. Bickley, B. A. Bowling”, D. A. Bryan’, J. van Zeijts*, K. S. White, S. Witherspoon, 

Thomas Jefferson National Accelerator Facility, Newport News, VA 

Abstract 

Many traditional control systems include a distributed 
collection of front end machines to control hardware. 
Back end tools are used to view, modify, and record the 
signals generated by these front end machines. Software 
servers, which are a middleware layer between the front 
and back ends, can improve a control system in several 
ways. Servers can enable on-line processing of raw data, 
and consolidation of functionality. In many cases data 
retrieved from the front end must be processed in order to 
convert the raw data into useful information. These 
calculations are often redundantly performed by different 
programs, frequently offline. Servers can monitor the raw 
data and rapidly perform calculations, producing new 
signals which can be treated like any other control system 
signal, and can be used by any back end application. 
Algorithms can be incorporated to actively modify signal 
values in the control system based upon changes of other 
signals, essentially producing feedback in a control 
system. Servers thus increase the flexibility of a control 
system. Lastly, servers running on inexpensive UNIX 
workstations can relay or cache frequently needed 
information, reducing the load on front end hardware by 
functioning as concentrators. Rather than many back end 
tools connecting directly to the front end machines, 
increasing the work load of these machines, they instead 
connect to the server. Servers like those discussed above 
have been used successfully at the Thomas Jefferson 
National Accelerator Facility to provide functionality such 
as beam steering, fault monitoring, storage of machine 
parameters, and on-line data processing. The authors 
discuss the potential uses of such, servers, and share the 
results of work performed to date. 

1 INTRODUCTION 

The classic control system in use in many locations today 
consists of a collection of front end machines, distributed 
around a facility, largely in order to keep them close to the 
hardware they are controlling. These front end machines 
are interfaced directly to the hardware, and are responsible 
for maintaining variables associated with the hardware, as 
well as responding to queries about the state of or 
modifying settings for the hardware. 

’ l-his work was supported under U.S. D.O.E. conmact #DE-ACOS- 

84ER40150 

’ Now with Arrow Electronics, Baltimore MD 

’ Email: btyan@jlab.org 

’ Now with BNL. Upton NY 

The users view the system from the point of view of the 
back end machines. These machines, often UNIX 
machines or PCs, run applications programs which modify 
the settings of hardware, display values from hardware, 
and monitor the control system’s behavior. 

Very frequently, the raw information obtained from the 
front end machines is not directly useful to the users, but 
needs to be processed in some way to make sense. Doing 
this in a back end program has the advantage of moving 
processing from the front end servers to the back end 
servers, which are generally less critical to the real-time 
control of the hardware, therefore reducing the overall 
load on the critical systems. This approach has several 
disadvantages, however. 

One disadvantage is that if many programs need to look 
at some new value which is derived from several control 
system variables, each must calculate these new values 
independently. This increases the resource consumption 
on the back end servers, the chance of introducing errors 
into the system, and the development time for each new 
application that must support these new values. 
Additionally, these new derived values will generally not 
be directly available for archiving, viewing, or monitoring 
by traditional tools designed for direct monitoring of 
control system values. 

2 MIDDLEWARE SERVERS 

2.1 What is a middleware server? 

The solution to these problems taken by the authors is to 
develop middleware servers. A middleware server is a 
program, a “software server”, which obtains data from the 
front-end servers, calculates new values, and creates 
virtual control system variables for viewing by back end 
tools. The goal of the middleware server is for it to be 
virtually transparent to the user - the user should not be 
concerned with whether the variables are obtained directly 
from the front end machines or am virtual variables on a 
middleware server. In addition, the algorithms used to 
derive these new values are located in one point, and 
easily be modified without the need to modify the client 
programs. 

2.2 Middleware servers at Jeferson Lab 

At the Thomas Jefferson National Accelerator Facility 
(JLab), the front end machines are dedicated machines 
running WindRiver System’s VxWorks, and EPICS, the 
Experimental Physics and Industrial Control System [l]. 
These systems monitor and control many aspects of the 



machine, ftom magnets for beam optics, to beam position 
monitors, to cryogenics. 

The back end tools at JLab are run on HP-UX UNIX 
machines, and consist of a mixture of the general purpose 
EPICS tools, such as viewers, archivers, and machine 
configuration save and restore tools, as well as in house 
developed applications. In addition, JLab uses a higher- 
level protocol called CDEV, for Common DEVice [2]. 
CDEV provides the advantage of making EPICS 
variables, and variables from other sources available to the 
user in such a way that they can be accessed with the same 
interface. Many of the existing tools for EPICS are being 
ported to CDEV, and much of the new development at 
JLab is based on CDEV. 

CDEV is particularly well suited to developing servers, 
since a Generic Server engine is provided [3]. This is a 
simple software construct that can be used to rapidly 
develop middleware servers. It provides the framework 
for monitoring existing values from the control system 
and for creating new attributes to be monitored by the 
back end servers. While enhancements to this framework 
are sometimes needed when developing an application, the 
developer is generally free to concentrate on developing 
the algorithm associated with processing the data, rather 
than being concerned with the framework and 
communications structure. 

3 USES FOR SERVERS 

There are may ways middleware can be used. As the 
authors continue to develop applications, more uses for 
these servers present themselves. 

3.1 Servers as online data sources 

One of the primary areas in which servers are useful is in 
providing or storing information to the control system that 
would otherwise either not be available, or that might be 
stored in front end machines needlessly. The servers can 
be constructed to contain CDEV variables that can be 
read, set, or monitored by users. These values do not need 
to come from the front end servers, but can be standalone 
values. Virtually any arbitrary value, from the names of 
the current operations crew to theoretical machine 
parameters can then be used just as if they were control 
system values. 

Additionally, these servers can be built with logic of 
their own. While still not manipulating the control system 
they can be loaded with theoretical values for certain 
parameters, and calculate new values from these, perhaps 
using one or more control system values in the 
computation. Since such servers run on inexpensive UNIX 
workstations, the load of performing these calculations is 
moved off of the front end computers. 

At JLab, our Model Server Artemis is an example of 
such a server [4]. Two instances of this application are 
used. Both are initially loaded with the theoretical optics 
for the machine. The second instance of the model is the 

periodically updated with actual values for components 
from the machine. Based on these input values, transfer 
matrices, alpha and beta values etc. are calculated and 
made available to optics applications. 

Additionally, information about the locations of signals 
(which front end server a particular channel resides oa) is 
stored in such a server. This is used, along with modified 
versions of back end tools, to speed connection time when 
iiCCeSSing Control SyStm channels [5]. 

3.2 Servers as controllers 

Another useful application of the server is as an actively 
controlling program. In this capacity, the server functiars 
as a less deterministic feedback system. The server 
monitors a number of values related to certain parameters 
of the control system. Based upon these values, llcw 
parameters are calculated and loaded back into the 
machine. This can continue periodically. In addition, the 
server allows the controls for the algorithm, such as 
parameters, whether to apply changes or not, etc., to be 
made available as control system signals. This makes 
monitoring and controlling the behavior of the server 
simple. 

At JLab, we use such servers for several beam control 
applications. Three servers fall into the category of 
“locks”. These servers monitor parameters of the beam - 
position within the beampipe, energy, and current - and 
try to “lock” them to some predefined value [6]. This is 
accomplished by reading the current value of the 
parameter one wishes to lock, calculating new values for 
parameters that modify the desired parameter, sod 
applying those changes to the control system. As an 
example, for beam position one would read the values of 
BPMs (Beam Position Monitors), determine where and by 
how much the beam is deviating from the ideal, and apply 
changes to steering magnets to return the beam to the 
optimal location. These servers perform these checks 
every 1 to 5 seconds, depending on the configuration of 
the accelerator. 

3.3 Servers as monitoring systems 

Servers can also be used to provide online monitoring of 
values in the system for diagnostic purposes. Most control 
systems provide some mechanism for noticing if a single 
signal exceeds predefmed limits and bringing this to the 
operators attention. Servers provide the benefit of 
monitoring multiple signals and inferring when a value is 
bad based upon its relationship with other signals. 

The server can also monitor values from multiple 
signals, and calculate new values from these signals - a 
“value added” signal. As in the case of the online data 
sources, doing the processing at the server level saves 
CPU load on the front end servers, leaving them free to 
control hardware. It is also superior to calculating these in 
the client program if multiple clients need this combined 
information. 



At JLab, this style of server is used for enhanced alarm 
servers, which monitor special parts of the machine and 
alert operators of trouble based on complex algorithms 
involving multiple signals. Additionally, this style of 
server is used in a program which calculates changes to 
the machines energy at a very low level, allowing 
interested parties to notice changes in the system. 

Additionally, a new more generic form of this server is 
being explored. The proposed tool, called the Automator, 
is intended to allow for generic, user defined instances of 
such a server to be created and used [7]. The server could 
monitor for specific alarm conditions and, optionally, take 
pm&fined actions when such conditions occur. 

3.4 Servers as caching &vices/concentrators 

Finally, servers can be used to cache or concentrate 
signals that are frequently accessed. By modifying the 
information flow so that the back end clients access the 
middleware server rather than the front end machine 
directly, the load on the front end machines is reduced, 
again freeing these machines for hardware control and 
processing. This type of server is often combined with 
some of the functionality of the monitoring servers 
mentioned above. 

At JLab, we use a hybrid of this type of server and a 
monitoring server for BPM data. With many BPMs, and 
many applications interested in using them, we created a 
server to monitor this data. Multiple clients then connect 
to the middleware server, rather than co~ecting directly 

to the Front end machine, which now has less co~ections 

to service. 

Our server also provides several additional services. It 
monitors the status information provided by the BPMs and 
produces enhanced status information. It filters out 
transient failures in the BPMs. and attempts to ensure that 
different attributes of information about a given BPM are 
correlated in time. This ensures that the client sees an 
accurate picture of the machine status. 

4 EXPERIENCE 

The experience the authors have had with these servers 
has generally been positive. These servers seem to provide 
a reliable, simple way of implementing what would 
otherwise be very complex actions. There have been 
problems associated with these servers, as there are with 
all software applications, and perhaps a tendency to use 
the tool to try to solve all problems, but the concept seems 
to be very sound. 

The authors have also found that these servers have 
practical limits to how large or how rapidly they can 
process information. Since these servers are monitoring 
values, and posting monitors to clients on changes, one 
must be careful not to overburden the code. One server 
developed on site attempted to process one hundred 
million events (changes in the control system that required 
modification to virtual variables) per day, or about lOCKI 

events per second. The peak load during transient events 
(such as beam turning on or off) was much higher than 
loo0 events per second. This server exhibited occasional 
problems with coherence with the control system, 
particularly immediately following high event count 
peaks. The solution was to split this server into small 
servers, to reduce the high number of events handled. 

Similarly, the active feed back programs, or locks. have 
a limit on how fast they can process. This is partially 
determined by the algorithm and the time needed to 
calculate a solution, but is also limited by the time needed 
to monitor the signals from the control system. For 
numerically intensive calculations a feedback loop of 
approximately 1Hz. seems to be a comfortable top speed 
for such servers, when running on a Hewlett Packard K- 
class machine. 

5 CONCLUSION 

In conclusion, these servers offer the developer a powerful 
tool for enhancing capability, often without the need to 
further burden front end servers or modify tested, working 
front end code. It is not a panacea for every control system 
problem, but when used properly is a powerful and 
effective way of addressing certain software problems. 

6 REFERENCES 
[I] http://www.aps.anl.gov/asd/conholslcpicsumnration/ 

EpicsGenerakpics_ovcrview.html 

[2] J. Chea, G. Heycs, W. Akas, D. Wu and W. Watson III, “CDEV: 
An Object-Oriented Class Library for Developing Device Control 
Applications”, Proceedings of ICALEPCS 1995 

(31 w. Akers. “An Object-Otiented Franwvork for Client/Serva 
Appkations”, Proceedings of ICALEPCS 1997 

(41 B. A. Bowling, W. Alters, H. Shoaee, W. Watson,‘J. vao Zeijts, S. 
Witherspoon, “‘Evaluation of a Server Client Architecture for 
Accelerator Modeling and Sirmlation”, Roccedings of CAP 1996 

[5] D. Juo, D. Bryan, W. Watson, Tentrally Managed Name 
Resolution Schemes for EPICS”, Prcadings of ICALBPCS 1997 

161 1. van Zeijts, ct al., “Design And lmplelnartatioo Of A Slow Orbit 
Control Package At Thomas Jefferson National Accelerator 
Facility”. Proceedings of PAC 1997 

PI D. Bryan+ M. Bickley, K. White, “The Automator : Intelligent 
Control System Monitoring”, these proceedings (1999) 


